Advertisements
Advertisements
Question
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
Options
2
4
6
8
Solution
8
\[\text{ The first and the last numbers are equal } . \]
\[\text{ Let the four given numbers be p, q, r and p } . \]
\[\text{ The first three of four given numbers are in G . P } . \]
\[ \therefore q^2 = p \cdot r . . . . . . . . \left( i \right)\]
\[\text{ And, the last three numbers are in A . P . with common difference 6 } . \]
\[\text{ We have }: \]
\[\text{ First term } = q\]
\[\text{ Second term } = r = q + 6\]
\[\text{ Third term } = p = q + 12\]
\[\text{ Also }, 2r = q + p\]
\[\text{ Now, putting the values of p and r in } \left( i \right): \]
\[ q^2 = \left( q + 12 \right)\left( q + 6 \right)\]
\[ \Rightarrow q^2 = q^2 + 18q + 72\]
\[ \Rightarrow 18q + 72 = 0\]
\[ \Rightarrow q + 4 = 0\]
\[ \Rightarrow q = - 4\]
\[\text{ Now, putting the value of q in } p = q + 12: \]
\[p = - 4 + 12 = 8\]
\[\]
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
Is 302 a term of the A.P. 3, 8, 13, ...?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of first n natural numbers.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
Write the common difference of an A.P. whose nth term is xn + y.
Write the sum of first n odd natural numbers.
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.