English

A Man Starts Repaying a Loan as First Instalment of Rs 100 = 00. If He Increases the Instalments by Rs 5 Every Month, What Amount He Will Pay in the 30th Instalment? - Mathematics

Advertisements
Advertisements

Question

A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?

Solution

Let

\[a_{30}\]  be the amount a man repays in the 30th instalment.
Let d be the common increment in his instalment every month.
Let a be the initial repayment.
Here, a = 100, d = 5, n = 30
Amount to be repaid in the 30th instalment:

\[a_{30}\]

\[\Rightarrow\] a+ \[\left( n - 1 \right)\] d

\[= 100 + 29 \times 5\]

\[ = 245\]

Hence, the man repays Rs 245 in his 30th instalment.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.7 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.7 | Q 11 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Is 68 a term of the A.P. 7, 10, 13, ...?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


How many numbers of two digit are divisible by 3?


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of first n natural numbers.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


Find the sum of odd integers from 1 to 2001.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×