English

Find the Sum of All Natural Numbers Between 1 and 100, Which Are Divisible by 2 Or 5. - Mathematics

Advertisements
Advertisements

Question

Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.

Solution

We have to find the sum of all the natural numbers that are divisible by 2 or 5
Required Sum = Sum of the natural numbers between 1 and 100 that are divisible by 2 + Sum of the natural numbers between 1 and 100 that are divisible by 5
                      − Sum of the natural numbers between 1 and 100 that are divisible by 2 and 5, i.e by 10

\[= \left( 2 + 4 + 6 + 8 + . . . + 98 \right) + \left( 5 + 10 + 15 + . . . + 95 \right) - \left( 10 + 20 + 30 + . . . + 90 \right)\]

\[ = \frac{50}{2}\left( 2 + 98 \right) + \frac{20}{2}\left( 5 + 95 \right) - \frac{10}{2}\left( 10 + 90 \right)\]

\[ = 2500 + 1000 - 500\]

\[ = 3000\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 4 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Is 68 a term of the A.P. 7, 10, 13, ...?


How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\] 


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


How many numbers of two digit are divisible by 3?


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all even integers between 101 and 999.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×