Advertisements
Advertisements
Question
Is 68 a term of the A.P. 7, 10, 13, ...?
Solution
7, 10, 13...
Here, we have:
a = 7
\[d = \left( 10 - 7 \right) = 3\]
\[\text { Let } a_n = 68\]
\[ \Rightarrow a + (n - 1) d = 68\]
\[ \Rightarrow 7 + (n - 1)(3) = 68\]
\[ \Rightarrow (n - 1)(3) = 61\]
\[ \Rightarrow (n - 1) = \frac{61}{3}\]
\[ \Rightarrow n = \frac{61}{3} + 1 = \frac{64}{3}\]
Since n is not a natural number.So, 68 is not a term of the given A.P.
APPEARS IN
RELATED QUESTIONS
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.