Advertisements
Advertisements
Question
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
Solution
Let the first terms of the two A.P.'s be a and a'; and their common difference be d and d'.
Now,
\[\frac{S_n}{S_n '} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]
\[ \Rightarrow \frac{\frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right]}{\frac{n}{2}\left[ 2a' + \left( n - 1 \right)d' \right]} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]
\[ \Rightarrow \frac{\left[ 2a + \left( n - 1 \right)d \right]}{\left[ 2a' + \left( n - 1 \right)d' \right]} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]
\[\text { Let }n = 23\]
\[ \Rightarrow \frac{2a + \left( 23 - 1 \right)d}{2a' + \left( 23 - 1 \right)d'} = \frac{3 \times 23 + 2}{2 \times 23 + 3}\]
\[ \Rightarrow \frac{2a + 22d}{2a' + 22d'} = \frac{69 + 2}{46 + 3}\]
\[ \Rightarrow \frac{2\left( a + 11d \right)}{2\left( a' + 11d' \right)} = \frac{71}{49}\]
\[ \therefore \frac{a_{12}}{a_{12'} } = \frac{71}{49}\]
So, the ratio of their 12th terms is 71 : 49.
APPEARS IN
RELATED QUESTIONS
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of all integers between 84 and 719, which are multiples of 5.
Find the sum of all even integers between 101 and 999.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.