Advertisements
Advertisements
Question
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
Solution
The terms (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) will be in A.P.
if (z2 + xz + x2) – (x2 + xy + y2) = (y2 + yz + z2) – (z2 + xz + x2)
i.e., z2 + xz – xy – y2 = y2 + yz – xz – x2
i.e., x2 + z2 + 2xz – y2 = y2 + yz + xy
i.e., (x + z)2 – y2 = y(x + y + z)
i.e., x + z – y = y
i.e., x + z = 2y
Which is true, since x, y, z are in A.P.
Hence x2 + xy + y2 , z2 + xz + x2, y2 + yz + z2 are in A.P.
APPEARS IN
RELATED QUESTIONS
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
bc, ca, ab are in A.P.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n odd natural numbers.
Write the sum of first n even natural numbers.
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.