Advertisements
Advertisements
Question
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
Solution
\[\text { Let the first term, the common difference and the sum of the first n terms of the first A . P . be} a_1 , d_1 and S_1 , respectively, and those of the second A . P . be a_2 , d_2 and S_2 , respectively . \]
\[\text { Then, we have }, \]
\[ S_1 = \frac{n}{2}\left[ 2 a_1 + \left( n - 1 \right) d_1 \right] \]
\[\text { And, } S_2 = \frac{n}{2}\left[ 2 a_2 + \left( n - 1 \right) d_2 \right]\]
\[\text { Given: } \]
\[ \frac{S_1}{S_2} = \frac{\frac{n}{2}\left[ 2 a_1 + \left( n - 1 \right) d_1 \right]}{\frac{n}{2}\left[ 2 a_2 + \left( n - 1 \right) d_2 \right]} = \frac{7n + 2}{n + 4}\]
\[ \Rightarrow \frac{S_1}{S_2} = \frac{\left[ 2 a_1 + \left( n - 1 \right) d_1 \right]}{\left[ 2 a_2 + \left( n - 1 \right) d_2 \right]} = \frac{7n + 2}{n + 4}\]
\[\text { To find the ratio of the 5th terms of the two A . P . s, we replace n by } (2 \times 5 - 1 = 9)\text { in the above equation }: \]
\[ \Rightarrow \frac{\left[ 2 a_1 + \left( 9 - 1 \right) d_1 \right]}{\left[ 2 a_2 + \left( 9 - 1 \right) d_2 \right]} = \frac{7 \times 9 + 2}{9 + 4}\]
\[ \Rightarrow \frac{\left[ 2 a_1 + \left( 8 \right) d_1 \right]}{\left[ 2 a_2 + \left( 8 \right) d_2 \right]} = \frac{7 \times 9 + 2}{9 + 4} = \frac{65}{13} \]
\[ \Rightarrow \frac{\left[ a_1 + 4 d_1 \right]}{\left[ a_2 + 4 d_2 \right]} = \frac{5}{1} = 5: 1\]
APPEARS IN
RELATED QUESTIONS
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 4, 9, 14, ... is 254?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of odd integers from 1 to 2001.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.