Advertisements
Advertisements
Question
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
Solution
\[\text { Given }: \]
\[ a_3 = 7, a_7 - 3 a_3 = 2\]
\[\text { We have: } \]
\[ a_3 = 7\]
\[ \Rightarrow a + \left( 3 - 1 \right)d = 7\]
\[ \Rightarrow a + 2d = 7 . . . (i) \]
\[\text { Also }, a_7 - 3 a_3 = 2\]
\[ \Rightarrow a_7 - 21 = 2 (\text { Given })\]
\[ \Rightarrow a + \left( 7 - 1 \right)d = 23\]
\[ \Rightarrow a + 6d = 23 . . . (ii)\]
\[\text { From (i) and (ii), we get: } \]
\[4d = 16\]
\[ \Rightarrow d = 4\]
\[\text { Putting the value in (i), we get }: \]
\[ a + 2(4) = 7\]
\[ \Rightarrow a = - 1\]
\[ \therefore S_{20} = \frac{20}{2}\left[ 2\left( - 1 \right) + \left( 20 - 1 \right)(4) \right]\]
\[ \Rightarrow S_{20} = 10\left[ - 2 + 76 \right]\]
\[ \Rightarrow S_{20} = 10\left[ 74 \right] = 740\]
\[ \therefore a = - 1, d = 4, S_{20} = 740\]
APPEARS IN
RELATED QUESTIONS
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Which term of the A.P. 84, 80, 76, ... is 0?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all odd numbers between 100 and 200.
Find the sum of all even integers between 101 and 999.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If the sum of n terms of a sequence is quadratic expression then it always represents an A.P