English

Find the Sum of All Odd Numbers Between 100 and 200. - Mathematics

Advertisements
Advertisements

Question

Find the sum of all odd numbers between 100 and 200.

Solution

All the odd numbers between 100 and 200 are:
101, 103...199
Here, we have:

\[a = 101\]

\[d = 2\]

\[ a_n = 199\]

\[ \Rightarrow 101 + (n - 1) \times 2 = 199\]

\[ \Rightarrow 2n - 2 = 98\]

\[ \Rightarrow 2n = 100\]

\[ \Rightarrow n = 50\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow S_{50} = \frac{50}{2}\left[ 2 \times 101 + (50 - 1)2 \right]\]

\[ \Rightarrow S_{50} = 25\left[ 202 + 98 \right]\]

\[\Rightarrow S_{50} = 7500\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 6 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?


Write the common difference of an A.P. whose nth term is xn + y.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×