Advertisements
Advertisements
प्रश्न
Find the sum of all odd numbers between 100 and 200.
उत्तर
All the odd numbers between 100 and 200 are:
101, 103...199
Here, we have:
\[a = 101\]
\[d = 2\]
\[ a_n = 199\]
\[ \Rightarrow 101 + (n - 1) \times 2 = 199\]
\[ \Rightarrow 2n - 2 = 98\]
\[ \Rightarrow 2n = 100\]
\[ \Rightarrow n = 50\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{50} = \frac{50}{2}\left[ 2 \times 101 + (50 - 1)2 \right]\]
\[ \Rightarrow S_{50} = 25\left[ 202 + 98 \right]\]
\[\Rightarrow S_{50} = 7500\]
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
How many terms of the A.P. -6 , `-11/2` , -5... are needed to give the sum –25?
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of first n odd natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the sum of all even integers between 101 and 999.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Write the sum of first n even natural numbers.
If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.