मराठी

In the Arithmetic Progression Whose Common Difference is Non-zero, the Sum of First 3 N Terms is Equal to the Sum of Next N Terms. Then the Ratio of the Sum of the First 2 N Terms to the Next - Mathematics

Advertisements
Advertisements

प्रश्न

In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is

पर्याय

  •  1/5

  •  2/3

  • 3/4

  • none of these

MCQ

उत्तर

1/5

\[S_{3n} = S_{4n} - S_{3n} \]

\[ \Rightarrow 2 S_{3n} = S_{4n} \]

\[ \Rightarrow 2 \times \frac{3n}{2}\left\{ 2a + \left( 3n - 1 \right)d \right\} = \frac{4n}{2}\left\{ 2a + \left( 4n - 1 \right)d \right\}\]

\[ \Rightarrow 3\left\{ 2a + \left( 3n - 1 \right)d \right\} = 2\left\{ 2a + \left( 4n - 1 \right)d \right\}\]

\[ \Rightarrow 6a + 9nd - 3d = 4a + 8nd - 2d\]

\[ \Rightarrow 2a + nd - d = 0\]

\[ \Rightarrow 2a + \left( n - 1 \right)d = 0 . . . . \left( 1 \right)\]

Required ratio: \[\frac{S_{2n}}{S_{4n} - S_{2n}}\]

\[\frac{S_{2n}}{S_{4n} - S_{2n}} = \frac{\frac{2n}{2}\left\{ 2a + \left( 2n - 1 \right)d \right\}}{\frac{4n}{2}\left\{ 2a + \left( 4n - 1 \right)d \right\} - \frac{2n}{2}\left\{ 2a + \left( 2n - 1 \right)d \right\}}\]

\[ = \frac{n\left( nd \right)}{2n\left( 3nd \right) - n\left( nd \right)}\]

\[ = \frac{1}{6 - 1}\]

\[ = \frac{1}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.9 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.9 | Q 11 | पृष्ठ ५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.

Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.


Which term of the A.P. 3, 8, 13, ... is 248?


Which term of the A.P. 84, 80, 76, ... is 0?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


Find the sum of odd integers from 1 to 2001.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×