Advertisements
Advertisements
Question
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
Options
1/5
2/3
3/4
none of these
Solution
1/5
\[S_{3n} = S_{4n} - S_{3n} \]
\[ \Rightarrow 2 S_{3n} = S_{4n} \]
\[ \Rightarrow 2 \times \frac{3n}{2}\left\{ 2a + \left( 3n - 1 \right)d \right\} = \frac{4n}{2}\left\{ 2a + \left( 4n - 1 \right)d \right\}\]
\[ \Rightarrow 3\left\{ 2a + \left( 3n - 1 \right)d \right\} = 2\left\{ 2a + \left( 4n - 1 \right)d \right\}\]
\[ \Rightarrow 6a + 9nd - 3d = 4a + 8nd - 2d\]
\[ \Rightarrow 2a + nd - d = 0\]
\[ \Rightarrow 2a + \left( n - 1 \right)d = 0 . . . . \left( 1 \right)\]
Required ratio: \[\frac{S_{2n}}{S_{4n} - S_{2n}}\]
\[\frac{S_{2n}}{S_{4n} - S_{2n}} = \frac{\frac{2n}{2}\left\{ 2a + \left( 2n - 1 \right)d \right\}}{\frac{4n}{2}\left\{ 2a + \left( 4n - 1 \right)d \right\} - \frac{2n}{2}\left\{ 2a + \left( 2n - 1 \right)d \right\}}\]
\[ = \frac{n\left( nd \right)}{2n\left( 3nd \right) - n\left( nd \right)}\]
\[ = \frac{1}{6 - 1}\]
\[ = \frac{1}{5}\]
APPEARS IN
RELATED QUESTIONS
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of all odd numbers between 100 and 200.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
Find the sum of odd integers from 1 to 2001.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P.
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the common difference of an A.P. whose nth term is xn + y.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If Sn denotes the sum of first n terms of an A.P. < an > such that
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.