Advertisements
Advertisements
Question
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
Solution
We have,
the initial salary, a1 = ₹5200,
the salary of the second month, a2 = ₹5200 + ₹320 = ₹5520,
the salary of the third month, a3 = ₹5520 + ₹320 = ₹5840,
\[\text { As, } a_2 - a_1 = 5520 - 5200 = 320 \text { and } a_3 - a_2 = 5840 - 5520 = 320\]
\[i . e . a_2 - a_1 = a_3 - a_2 \]
\[\text { So, } a_1 , a_2 , a_3 , . . . \text { are in A . P } . \]
\[\text { Also, } a = 5200, d = 320\]
\[\left( i \right) a_{10} = a + \left( 10 - 1 \right)d\]
\[ = 5200 + 9 \times 320\]
\[ = 5200 + 2880\]
\[ = 8080\]
\[\text { So, the salary of the man for the tenth month is } ₹ 8, 080 . \]
\[\left( ii \right) S_{12} = \frac{12}{2}\left[ 2a + \left( 12 - 1 \right)d \right]\]
\[ = 6\left( 2 \times 5200 + 11 \times 320 \right)\]
\[ = 6\left( 10400 + 3520 \right)\]
\[ = 6 \times 13920\]
\[ = 83520\]
\[\text { So, the total earnings of the man during the first year is } ₹ 83, 520 .\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of first n odd natural numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If Sn denotes the sum of first n terms of an A.P. < an > such that
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.