English

A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years. - Mathematics

Advertisements
Advertisements

Question

A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.

Sum

Solution

Amount deposited in bank = 10000 Rs.

Rate of interest = 5% Per year

Interest after one year = `(10000 xx 5 xx 1)/100 `

= 500 Rs.

In this way he will get Rs. 500 interest every year.

1 year, 2 years, 3 years,……. amount of interest after

500, 1000, 1500, …....

Interest in 15th year = (n – 1) × 500

= (15 – 1) × 500

= 14 × 500

= 7000 Rs.

Principal amount = 10000 Rs.

In his account in the 15th year = Rs. 10000 + 7000 = Rs. 17000

20 years interest = 20 × 500

Interest for 20 years = 20 × 500

= 10000 Rs.

Principal amount = 10000 Rs.

Total deposit in bank after 20 years = Rs. 10000 + 10000 = Rs. 20000

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Sequences and Series - Miscellaneous Exercise [Page 200]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 9 Sequences and Series
Miscellaneous Exercise | Q 30 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Is 302 a term of the A.P. 3, 8, 13, ...?


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of first n natural numbers.


Find the sum of first n odd natural numbers.


Find the sum of all integers between 100 and 550, which are divisible by 9.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


Write the common difference of an A.P. whose nth term is xn + y.


If the sum of p terms of an A.P. is q and the sum of q terms is p, then the sum of p + q terms will be


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×