Advertisements
Advertisements
Question
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Solution
Cost of machine = Rs. 15625
It will depreciate each year by 20%
∴ Cost of machine at the end of first year
= Rs. `(15625 - (15625 xx 20)/100)`
= Rs. (15625 - 3125)
= Rs. 12500
Cost of machine at the end of second year
= Rs. `(12500 - (12500 xx 20)/100)`
= Rs. [12500 - 2500]
= Rs. 10000
Cost of machine at the end of third year
= Rs. `(10000 - (10000 xx 20)/100)`
= Rs. [10000 - 2000] = Rs. 8000
Cost of machine at the end of fourth year
= Rs. `(8000 - (8000 xx 20)/100)`
=Rs. [8000 - 1600]
= Rs. 6400
Cost of machine at the end of fifth year
= Rs. `(6400 - (6400 xx 20)/100)`
= Rs. [6400 - 1280]
= Rs. 5120
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 3, 8, 13, ... is 248?
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n odd natural numbers.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).