English

Write the Value of N for Which Nth Terms of the A.P.S 3, 10, 17, ... and 63, 65, 67, .... Are Equal. - Mathematics

Advertisements
Advertisements

Question

Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.

Solution

For the first series, a = 3,

\[d_1\] = 7
For the second series, b = 63,

\[d_2\] = 2
Given:

\[a_n = b_n \]

\[ \Rightarrow a + \left( n - 1 \right) d_1 = b + \left( n - 1 \right) d_2 \]

\[ \Rightarrow 3 + \left( n - 1 \right)7 = 63 + \left( n - 1 \right)2\]

\[ \Rightarrow 3 + 7n - 7 = 63 + 2n - 2\]

\[ \Rightarrow 5n = 65\]

\[ \Rightarrow n = 13\]

Hence, the 13th terms of both the series are the same.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.8 [Page 50]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.8 | Q 8 | Page 50

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of odd integers from 1 to 2001.


In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

25 + 22 + 19 + 16 + ... + x = 115


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


Find the sum of odd integers from 1 to 2001.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×