English

If the 5th and 12th Terms of an A.P. Are 30 and 65 Respectively, What is the Sum of First 20 Terms? - Mathematics

Advertisements
Advertisements

Question

If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?

Solution

\[\text { We have }: \]

\[ a_5 = 30\]

\[ \Rightarrow a + \left( 5 - 1 \right)d = 30\]

\[ \Rightarrow a + 4d = 30 . . . (i)\]

\[\text { Also }, a_{12} = 65\]

\[ \Rightarrow a + \left( 12 - 1 \right)d = 65\]

\[ \Rightarrow a + 11d = 65 . . . . . (ii)\]

\[\text { Solving (i) and (ii), we get }: \]

\[7d = 35\]

\[ \Rightarrow d = 5\]

\[\text { Putting the value of d in (i), we get }: \]

\[a + 4 \times 5 = 30\]

\[ \Rightarrow a = 10\]

\[ \therefore S_{20} = \frac{20}{2}\left[ 2 \times 10 + (20 - 1) \times 5 \right]\]

\[ \Rightarrow S_{20} = 10\left[ 2 \times 10 + (20 - 1) \times 5 \right]\]

\[ \Rightarrow S_{20} = 1150\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.4 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.4 | Q 23 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Is 68 a term of the A.P. 7, 10, 13, ...?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all integers between 50 and 500 which are divisible by 7.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., then show that:

 a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.


A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.


The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. whose nth term is xn + y.


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


Write the sum of first n even natural numbers.


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×