English

How Many Numbers Are There Between 1 and 1000 Which When Divided by 7 Leave Remainder 4? - Mathematics

Advertisements
Advertisements

Question

How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?

Solution

A number N is divided by 7 leaves a remainder 4.

∴ = 7q + 4

N can take values 4, 11, 18, ..... 998

Now,
4, 11, 18, ..... 998 are in arithmetic progression.
First term a = 4
common difference d = 7
last term l = 998
We know that,
l = a + (n − 1)d
⇒ 998 = 4 + (n − 1)7
⇒ 998 = 4 + 7n − 7
⇒ 998 = 7n − 3
⇒ 1001 = 7n
⇒ \[n = \frac{1001}{7}\]

⇒ n = 143

Hence, 143 numbers are there between 1 and 1000 which when divided by 7 leave remainder 4.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.2 [Page 12]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.2 | Q 21 | Page 12

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


How many terms are there in the A.P. 7, 10, 13, ... 43 ?


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of first n natural numbers.


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Find the sum of all odd numbers between 100 and 200.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n. 


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


Mark the correct alternative in the following question:

Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×