Advertisements
Advertisements
Question
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Solution
\[\text { Let the four numbers be }a - 3d, a - d, a + d, a + 3d . \]
\[\text { Sum } = 50\]
\[ \Rightarrow a - 3d + a - d + a + d + a + 3d = 50\]
\[ \Rightarrow 4a = 50\]
\[ \Rightarrow a = \frac{25}{2} . . . (i)\]
\[\text { Also }, a + 3d = 4(a - 3d)\]
\[ \Rightarrow a + 3d = 4a - 12d\]
\[ \Rightarrow 3a = 15d\]
\[ \Rightarrow a = 5d\]
\[ \Rightarrow \frac{25}{2 \times 5} = d \left( \text { Using } (i) \right)\]
\[ \Rightarrow \frac{5}{2} = d\]
\[\text { So, the terms are as follows: } \]
\[ \left( \frac{25}{2} - 3 \times \frac{5}{2} \right), \left( \frac{25}{2} - \frac{5}{2} \right), \left( \frac{25}{2} + \frac{5}{2} \right), \left( \frac{25}{2} + 3 \times \frac{5}{2} \right)\]
\[ = 5, 10, 15, 20\]
APPEARS IN
RELATED QUESTIONS
Find the sum of odd integers from 1 to 2001.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
Which term of the A.P. 84, 80, 76, ... is 0?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n natural numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
Write the common difference of an A.P. whose nth term is xn + y.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.