Advertisements
Advertisements
Question
If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad
Solution
Since a, b, c, d are in A.P.
Then A.M. > G.M.
For the first three terms.
Therefore, `b > sqrt(ac) ("Here" (a + c)/2 = b)`
Squaring, we get
b2 > ac ....(1)
Similarly, for the last three terms
A.M. > G.M.
`c > sqrt(bd) ("Here" (b + d)/2 = c)`
c2 > bd ....(2)
Multiplying (1) and (2), we get
b2 c2 > (ac) (bd)
⇒ bc > ad
APPEARS IN
RELATED QUESTIONS
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Is 302 a term of the A.P. 3, 8, 13, ...?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
How many numbers of two digit are divisible by 3?
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
Write the sum of first n even natural numbers.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.