English

A Carpenter Was Hired to Build 192 Window Frames. the First Day He Made Five Frames and Each Day Thereafter He Made Two More Frames than He Made the Day Before. How Many Days Did It Take Him to - Mathematics

Advertisements
Advertisements

Question

A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 

Solution

\[\text { We have, } \]

\[S = 192, a = 5, d = 2\]

\[\text { Now, } \]

\[ S_n = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2 \times 5 + \left( n - 1 \right) \times 2 \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 10 + 2n - 2 \right] = 192\]

\[ \Rightarrow \frac{n}{2}\left[ 2n + 8 \right] = 192\]

\[ \Rightarrow n\left( n + 4 \right) = 192\]

\[ \Rightarrow n^2 + 4n = 192\]

\[ \Rightarrow n^2 - 12n + 16n - 192 = 0\]

\[ \Rightarrow n\left( n - 12 \right) + 16\left( n - 12 \right) = 0\]

\[ \Rightarrow \left( n - 12 \right)\left( n + 16 \right) = 0\]

\[ \Rightarrow \left( n - 12 \right) = 0 \text { or } \left( n + 16 \right) = 0\]

\[ \Rightarrow n = 12 or n = - 16\]

\[ \because \text { n cannot be negative } . \]

\[ \therefore n = 12\]

So, the carpenter takes 12 days to finish the job.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.7 [Page 49]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.7 | Q 12 | Page 49

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = 1, an = an − 1 + 2, n ≥ 2


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


Which term of the A.P. 4, 9, 14, ... is 254?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×