English

If A, B, C is in A.P., Prove That: (A − C)2 = 4 (A − B) (B − C) - Mathematics

Advertisements
Advertisements

Question

If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)

Solution

Since a, b, c are in A.P., we have:
    2b = a+c

\[\Rightarrow\] b = \[\frac{a + c}{2}\]

Consider RHS:
4 (a − b) (b − c)

\[\text { Substituting b } = \frac{a + c}{2}: \]

\[ \Rightarrow 4\left\{ a - \frac{a + c}{2} \right\}\left\{ \frac{a + c}{2} - c \right\}\]

\[ \Rightarrow 4\left\{ \frac{2a - a - c}{2} \right\}\left\{ \frac{a + c - 2c}{2} \right\}\]

\[ \Rightarrow \left( a - c \right)\left( a - c \right)\]

\[ \Rightarrow \left( a - c \right)^2\]

Hence, proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Arithmetic Progression - Exercise 19.5 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 19 Arithmetic Progression
Exercise 19.5 | Q 5.1 | Page 42

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of all odd numbers between 100 and 200.


Find the sum of all integers between 50 and 500 which are divisible by 7.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


Write the sum of first n even natural numbers.


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


If m th term of an A.P. is n and nth term is m, then write its pth term.


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×