हिंदी

If A, B, C is in A.P., Prove That: (A − C)2 = 4 (A − B) (B − C) - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)

उत्तर

Since a, b, c are in A.P., we have:
    2b = a+c

\[\Rightarrow\] b = \[\frac{a + c}{2}\]

Consider RHS:
4 (a − b) (b − c)

\[\text { Substituting b } = \frac{a + c}{2}: \]

\[ \Rightarrow 4\left\{ a - \frac{a + c}{2} \right\}\left\{ \frac{a + c}{2} - c \right\}\]

\[ \Rightarrow 4\left\{ \frac{2a - a - c}{2} \right\}\left\{ \frac{a + c - 2c}{2} \right\}\]

\[ \Rightarrow \left( a - c \right)\left( a - c \right)\]

\[ \Rightarrow \left( a - c \right)^2\]

Hence, proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.5 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.5 | Q 5.1 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


Which term of the A.P. 84, 80, 76, ... is 0?


Is 68 a term of the A.P. 7, 10, 13, ...?


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?


Find the 12th term from the following arithmetic progression:

 3, 5, 7, 9, ... 201


How many numbers of two digit are divisible by 3?


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


Show that x2 + xy + y2, z2 + zx + x2 and y2 + yz + z2 are consecutive terms of an A.P., if x, y and z are in A.P. 


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.


Write the sum of first n even natural numbers.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×