Advertisements
Advertisements
प्रश्न
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
उत्तर
Let n be the time in which the man saved Rs 200.
Here, d= 4, a = 32
We know:
\[S_n = \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}\]
\[ \Rightarrow 200 = \frac{n}{2}\left\{ 2 \times 32 + \left( n - 1 \right)4 \right\}\]
\[ \Rightarrow 400 = 64n + 4 n^2 - 4n\]
\[ \Rightarrow 4 n^2 + 60n - 400 = 0\]
\[ \Rightarrow n^2 + 15n - 100 = 0\]
\[ \Rightarrow n^2 + 20n - 5n - 100 = 0\]
\[ \Rightarrow \left( n + 20 \right)\left( n - 5 \right) = 0\]
\[ \Rightarrow n = 5, n = - 20 \left( \text { Rejecting the negative value } \right)\]
Therefore, the man took 5 years to save Rs 200.
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of all numbers between 200 and 400 which are divisible by 7.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
How many numbers of two digit are divisible by 3?
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of first n odd natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
Find the sum of odd integers from 1 to 2001.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.
A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.