हिंदी

Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.

योग

उत्तर

We know that in an A.P., the sum of the terms equidistant from the beginning and end is always the same and is equal to the sum of first and last term.

Therefore d = b – a

i.e., a1 + a24 = a5 + a20

= a10 + a15

It is given that (a1 + a24) + (a5 + a20) + (a10 + a15) = 225

⇒ (a1 + a24) + (a1 + a24) + (a1 + a24) =225

⇒ 3(a1 + a24) = 225

⇒ a1 + a24 = 75

We know that Sn = `n/2[a + 1]`

Where a is the first term and l is the last term of an A.P.

Thus, S24 = `24/2 [a_1 + a_24]`

= 12 × 75

= 900

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Solved Examples [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Solved Examples | Q 5 | पृष्ठ १५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case. 

9, 7, 5, 3, ...


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


Find the sum of the following arithmetic progression :

41, 36, 31, ... to 12 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of first n natural numbers.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×