हिंदी

If the Sum of First P Terms of an A.P. is Equal to the Sum of the First Q Terms, Then Find the Sum of the First (P + Q) Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.

उत्तर

Let a and d be the first term and the common difference of the A.P. respectively.

Here,

Thus, the sum of the first (p + q) terms of the A.P. is 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.2 [पृष्ठ १८५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.2 | Q 10 | पृष्ठ १८५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.


How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

nth term of the A.P. 13, 8, 3, −2, ...


Is 302 a term of the A.P. 3, 8, 13, ...?


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


Find the sum of odd integers from 1 to 2001.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If a, b, c is in A.P., prove that:

 (a − c)2 = 4 (a − b) (b − c)


A piece of equipment cost a certain factory Rs 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost?


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. whose nth term is xn + y.


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


The sum of n terms of an AP is 3n2 + 5n. The number of term which equals 164 is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×