हिंदी

A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years. - Mathematics

Advertisements
Advertisements

प्रश्न

A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.

योग

उत्तर

Amount deposited in bank = 10000 Rs.

Rate of interest = 5% Per year

Interest after one year = `(10000 xx 5 xx 1)/100 `

= 500 Rs.

In this way he will get Rs. 500 interest every year.

1 year, 2 years, 3 years,……. amount of interest after

500, 1000, 1500, …....

Interest in 15th year = (n – 1) × 500

= (15 – 1) × 500

= 14 × 500

= 7000 Rs.

Principal amount = 10000 Rs.

In his account in the 15th year = Rs. 10000 + 7000 = Rs. 17000

20 years interest = 20 × 500

Interest for 20 years = 20 × 500

= 10000 Rs.

Principal amount = 10000 Rs.

Total deposit in bank after 20 years = Rs. 10000 + 10000 = Rs. 20000

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Miscellaneous Exercise | Q 30 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 84, 80, 76, ... is 0?


Is 302 a term of the A.P. 3, 8, 13, ...?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


Find the 12th term from the following arithmetic progression:

1, 4, 7, 10, ..., 88


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of first n odd natural numbers.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.


If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×