Advertisements
Advertisements
प्रश्न
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
विकल्प
sec a1 − sec an
cosec a1 − cosec an
cot a1 − cot an
tan an − tan a1
उत्तर
tan an − tan a1
We have:
\[\sin d \left( \sec a_1 \sec a_2 + \sec a_2 \sec a_3 + . . . . + \sec a_{n - 1} \sec a_n \right)\]
\[ = \frac{\sin d}{\cos a_1 \cos a_2} + \frac{\sin d}{\cos a_2 \cos a_3} + . . . . . + \frac{\sin d}{\cos a_{n - 1} \cos a_n}\]
\[ = \frac{\sin ( a_2 - a_1 )}{\cos a_1 \cos a_2} + \frac{\sin ( a_3 - a_2 )}{\cos a_2 \cos a_3} + . . . . + \frac{\sin ( a_n - a_{n - 1} )}{\cos a_{n - 1} \cos a_n}\]
\[ = \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\cos a_1 \cos a_2} + \frac{\sin a_3 \cos a_2 - \cos a_3 \sin a_2}{\cos a_1 \cos a_2} + . . . . . + \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\cos a_1 \cos a_2}\]
\[ = \left( \tan a_1 - \tan a_2 \right) + \left( \tan a_2 - \tan a_3 \right) + . . . . . + \left( \tan a_{n - 1} - \tan a_n \right)\]
\[ = \tan a_1 - \tan a_n\]
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
3, −1, −5, −9 ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of first n natural numbers.
Find the sum of all integers between 84 and 719, which are multiples of 5.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
Find the sum of odd integers from 1 to 2001.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If Sn denotes the sum of first n terms of an A.P. < an > such that
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
A man saved Rs 66000 in 20 years. In each succeeding year after the first year he saved Rs 200 more than what he saved in the previous year. How much did he save in the first year?
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?