Advertisements
Advertisements
प्रश्न
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
पर्याय
sec a1 − sec an
cosec a1 − cosec an
cot a1 − cot an
tan an − tan a1
उत्तर
tan an − tan a1
We have:
\[\sin d \left( \sec a_1 \sec a_2 + \sec a_2 \sec a_3 + . . . . + \sec a_{n - 1} \sec a_n \right)\]
\[ = \frac{\sin d}{\cos a_1 \cos a_2} + \frac{\sin d}{\cos a_2 \cos a_3} + . . . . . + \frac{\sin d}{\cos a_{n - 1} \cos a_n}\]
\[ = \frac{\sin ( a_2 - a_1 )}{\cos a_1 \cos a_2} + \frac{\sin ( a_3 - a_2 )}{\cos a_2 \cos a_3} + . . . . + \frac{\sin ( a_n - a_{n - 1} )}{\cos a_{n - 1} \cos a_n}\]
\[ = \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\cos a_1 \cos a_2} + \frac{\sin a_3 \cos a_2 - \cos a_3 \sin a_2}{\cos a_1 \cos a_2} + . . . . . + \frac{\sin a_2 \cos a_1 - \cos a_2 \sin a_1}{\cos a_1 \cos a_2}\]
\[ = \left( \tan a_1 - \tan a_2 \right) + \left( \tan a_2 - \tan a_3 \right) + . . . . . + \left( \tan a_{n - 1} - \tan a_n \right)\]
\[ = \tan a_1 - \tan a_n\]
APPEARS IN
संबंधित प्रश्न
If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Find:
18th term of the A.P.
\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the A.P. 4, 9, 14, ... is 254?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of all odd numbers between 100 and 200.
Find the sum of all integers between 50 and 500 which are divisible by 7.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Find the sum of odd integers from 1 to 2001.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.