मराठी

If the Sums of N Terms of Two Ap.'S Are in the Ratio (3n + 2) : (2n + 3), Then Find the Ratio of Their 12th Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.

उत्तर

Let the first terms of the two A.P.'s be a and a'; and their common difference be d and d'.
Now,

\[\frac{S_n}{S_n '} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]

\[ \Rightarrow \frac{\frac{n}{2}\left[ 2a + \left( n - 1 \right)d \right]}{\frac{n}{2}\left[ 2a' + \left( n - 1 \right)d' \right]} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]

\[ \Rightarrow \frac{\left[ 2a + \left( n - 1 \right)d \right]}{\left[ 2a' + \left( n - 1 \right)d' \right]} = \frac{\left( 3n + 2 \right)}{\left( 2n + 3 \right)}\]

\[\text { Let  }n = 23\]

\[ \Rightarrow \frac{2a + \left( 23 - 1 \right)d}{2a' + \left( 23 - 1 \right)d'} = \frac{3 \times 23 + 2}{2 \times 23 + 3}\]

\[ \Rightarrow \frac{2a + 22d}{2a' + 22d'} = \frac{69 + 2}{46 + 3}\]

\[ \Rightarrow \frac{2\left( a + 11d \right)}{2\left( a' + 11d' \right)} = \frac{71}{49}\]

\[ \therefore \frac{a_{12}}{a_{12'} } = \frac{71}{49}\]

So, the ratio of their 12th terms is 71 : 49.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.8 [पृष्ठ ५१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.8 | Q 11 | पृष्ठ ५१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the A.P. 4, 9, 14, ... is 254?


The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.


Find the sum of the following arithmetic progression :

 (x − y)2, (x2 + y2), (x + y)2, ... to n terms


Find the sum of first n odd natural numbers.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If a, b, c is in A.P., then show that:

b + c − a, c + a − b, a + b − c are in A.P.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid amount. How much the tractor cost him?


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.


In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] ,  then k =


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?


Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2 


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×