मराठी

The sum of terms equidistant from the beginning and end in an A.P. is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.

रिकाम्या जागा भरा

उत्तर

The sum of terms equidistant from the beginning and end in an A.P. is equal to the [first term + last term].

Explanation:

Let A.P be a, a + d, a + 2d, a + 3d, …, a + (n – 1)d

Taking first and last term

a1 + an = a + a + (n – 1)d

= 2a + (n – 1)d

Taking second and second last term

a2 + an–1 = (a + d) + [a + (n – 2)d]

= 2a + (n – 1)d = a1 + an

Taking third from the beginning and the third from the end

a3 + an–2 = (a + 2d) + [a + (n – 3)d]

= 2a + (n – 1)d

= a1 + an

From the above pattern, we observe that the sum of terms equidistant from the beginning and the end in an A.P is equal to the [first term + last term]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise [पृष्ठ १६४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise | Q 28 | पृष्ठ १६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all even integers between 101 and 999.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the common difference of an A.P. whose nth term is xn + y.


Write the sum of first n odd natural numbers.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n


Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


If a, b, c, d are four distinct positive quantities in A.P., then show that bc > ad


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.


If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×