Advertisements
Advertisements
प्रश्न
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
उत्तर
\[a^2 , b^2 , c^2 \text { are in A . P } . \]
\[ \therefore 2 b^2 = a^2 + c^2 \]
\[ \Rightarrow b^2 - a^2 = c^2 - b^2 \]
\[ \Rightarrow (b + a)(b - a) = (c - b)(c + b)\]
\[ \Rightarrow \frac{b - a}{c + b} = \frac{c - b}{b + a}\]
\[ \Rightarrow \frac{b - a}{(c + a)(c + b)} = \frac{c - b}{(b + a)(c + a)} \left[ \text { Multiplying both the sides by } \frac{1}{c + a} \right]\]
\[ \Rightarrow \frac{1}{c + a} - \frac{1}{b + c} = \frac{1}{a + b} - \frac{1}{c + a}\]
\[ \therefore ' \frac{1}{b + c}, \frac{1}{c + a}, \frac{1}{a + b} \text { are in A . P } . \]
\[\text { Multiplying each term by } (a + b + c): \]
\[\frac{a + b + c}{b + c}, \frac{a + b + c}{c + a}, \frac{a + b + c}{a + b} \text { are in A . P } . \]
\[\text { Thus }, \frac{a}{b + c} + 1 , \frac{b}{c + a} + 1 , \frac{c}{a + b} + 1 \text { are in A . P } . \]
\[\text { Hence }, \frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b} \text { are in A . P } .\]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
The nth term of a sequence is given by an = 2n2 + n + 1. Show that it is not an A.P.
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
How many terms are there in the A.P.\[- 1, - \frac{5}{6}, -\frac{2}{3}, - \frac{1}{2}, . . . , \frac{10}{3}?\]
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of first n natural numbers.
Find the sum of all integers between 50 and 500 which are divisible by 7.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?
In n A.M.'s are introduced between 3 and 17 such that the ratio of the last mean to the first mean is 3 : 1, then the value of n is
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
Let Sn denote the sum of first n terms of an A.P. If S2n = 3Sn, then S3n : Sn is equal to
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.