मराठी

The Nth Term of a Sequence is Given by an = 2n + 7. Show that It is an A.P. Also, Find Its 7th Term. - Mathematics

Advertisements
Advertisements

प्रश्न

The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.

उत्तर

\[a_n = 2n + 7\]

\[ \therefore a_1 = 2 \times 1 + 7 = 9\]

\[ a_2 = 2 \times 2 + 7 = 11\]

\[ a_3 = 2 \times 3 + 7 = 13\]

\[ a_4 = 2 \times 4 + 7 = 15\]

\[\text { and so on }\]

\[\text { So, common difference }\left( d \right) = 11 - 9 = 2\]

\[\text { Thus, the above sequence is an A . P . with the common difference as}  2\]

\[ a_7 = 2 \times 7 + 7 = 21\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.1 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.1 | Q 7 | पृष्ठ ४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

How many terms of the A.P.  -6 , `-11/2` , -5... are needed to give the sum –25?


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2

Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.

 


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.


The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Find the sum of first n odd natural numbers.


The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.


If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×