Advertisements
Advertisements
प्रश्न
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
उत्तर
\[S_n = n^2 p\]
\[ \Rightarrow \frac{n}{2}\left[ 2a + (n - 1)d \right] = n^2 p\]
\[ \Rightarrow 2np = 2a + (n - 1)d . . . (i)\]
\[ S_m = m^2 p\]
\[ \Rightarrow \frac{m}{2}\left[ 2a + (m - 1)d \right] = m^2 p\]
\[ \Rightarrow 2mp = 2a + (m - 1)d . . . (ii)\]
\[\text { Subtracting (ii) from (i), we get }: \]
\[2p(n - m) = (n - m)d\]
\[ \Rightarrow 2p = d . . . (iii)\]
\[\text { Substituing the value in (i), we get }: \]
\[nd = 2a + (n - 1)d\]
\[ \Rightarrow nd - nd + d = 2a\]
\[ \Rightarrow a = \frac{d}{2} = p \left[ \text { from }(iii) \right] . . . (iv)\]
\[ \therefore S_p = \frac{p}{2}\left[ 2a + \left( p - 1 \right)d \right]\]
\[ \Rightarrow S_p = \frac{p}{2}\left[ 2p + \left( p - 1 \right)2p \right]\]
\[ \Rightarrow S_p = \frac{p}{2}\left[ 2p + 2 p^2 - 2p \right]\]
\[ \Rightarrow S_p = \frac{p}{2}\left[ 2 p^2 \right]\]
\[ \Rightarrow S_p = p^3 \]
APPEARS IN
संबंधित प्रश्न
In an A.P., if pth term is 1/q and qth term is 1/p, prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`
The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
Is 302 a term of the A.P. 3, 8, 13, ...?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find 32nd term.
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
Write the common difference of an A.P. the sum of whose first n terms is
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
In the arithmetic progression whose common difference is non-zero, the sum of first 3 n terms is equal to the sum of next n terms. Then the ratio of the sum of the first 2 n terms to the next 2 nterms is
If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] =
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.