मराठी

Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. - Mathematics

Advertisements
Advertisements

प्रश्न

Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?

बेरीज

उत्तर

price of scooter = 22000 Rs.

cash payment = 4000 Rs.

Unpaid amount = 22000 – 4000

= 18000 Rs.

amount of one installment = 1000 Rs.

∴ total installments = `18000/1000 = 18`

P Interest on principal at 10% per annum for one year = `("P" xx 10 xx 1)/100 = "P"/10`

After paying the installment, the remaining amount on which interest is to be charged for one year,

= 18000, 17000, 16000, ….., 1000

total interest amount

= `1/10 (18000 + 17000 + 16000 + ....... +  "to 18 terms")`

= `1/10 xx 18/2 [2 xx 18000 - (18 - 1) xx 1000]`

= `9/10[36000 - 17000]`

= `(9 xx 19000)/10`

 = 17100 Rs.

total installment amount = 18000 Rs.

cash = 4000 Rs.

Total payment = (18000 + 17000) + 4000 Rs.

= 39,100 Rs.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Miscellaneous Exercise [पृष्ठ २००]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Miscellaneous Exercise | Q 28 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the sum of n terms of an A.P. is (pn qn2), where p and q are constants, find the common difference.


The ratio of the sums of m and n terms of an A.P. is m2n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

 3, −1, −5, −9 ...


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Which term of the A.P. 84, 80, 76, ... is 0?


If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all even integers between 101 and 999.


Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


Find the sum of odd integers from 1 to 2001.


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


We know that the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sided polygon.


In a potato race 20 potatoes are placed in a line at intervals of 4 meters with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he run in bringing back all the potatoes?


Write the sum of first n odd natural numbers.


If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?


If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


If abc are in A.P. and xyz are in G.P., then the value of xb − c yc − a za − b is


If abc are in G.P. and a1/b1/y = c1/z, then xyz are in


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×