Advertisements
Advertisements
प्रश्न
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
उत्तर
We have to find the sum of all the natural numbers that are divisible by 2 or 5
Required Sum = Sum of the natural numbers between 1 and 100 that are divisible by 2 + Sum of the natural numbers between 1 and 100 that are divisible by 5
− Sum of the natural numbers between 1 and 100 that are divisible by 2 and 5, i.e by 10
\[= \left( 2 + 4 + 6 + 8 + . . . + 98 \right) + \left( 5 + 10 + 15 + . . . + 95 \right) - \left( 10 + 20 + 30 + . . . + 90 \right)\]
\[ = \frac{50}{2}\left( 2 + 98 \right) + \frac{20}{2}\left( 5 + 95 \right) - \frac{10}{2}\left( 10 + 90 \right)\]
\[ = 2500 + 1000 - 500\]
\[ = 3000\]
APPEARS IN
संबंधित प्रश्न
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
A sequence is defined by an = n3 − 6n2 + 11n − 6, n ϵ N. Show that the first three terms of the sequence are zero and all other terms are positive.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Find:
nth term of the A.P. 13, 8, 3, −2, ...
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of first n odd natural numbers.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all even integers between 101 and 999.
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
Find the sum of odd integers from 1 to 2001.
The sums of first n terms of two A.P.'s are in the ratio (7n + 2) : (n + 4). Find the ratio of their 5th terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
a (b +c), b (c + a), c (a +b) are in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
a3 + c3 + 6abc = 8b3.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sum of n terms of an A.P. be 3 n2 − n and its common difference is 6, then its first term is
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.