Advertisements
Advertisements
प्रश्न
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
पर्याय
\[\frac{1}{2} p^3\]
mn p
P3
(m + n) p2
उत्तर
p3
Given:
\[S_n = n^2 p\]
\[ \Rightarrow \frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\} = n^2 p\]
\[ \Rightarrow 2a + \left( n - 1 \right)d = 2np\]
\[ \Rightarrow 2a = 2np - \left( n - 1 \right)d . . . . . \left( 1 \right)\]
\[ S_m = m^2 p\]
\[ \Rightarrow \frac{m}{2}\left\{ 2a + \left( m - 1 \right)d \right\} = m^2 p\]
\[ \Rightarrow 2a + \left( m - 1 \right)d = 2mp\]
\[ \Rightarrow 2a = 2mp - \left( m - 1 \right)d . . . . . \left( 2 \right)\]
From
\[\left( 1 \right) \text { and } \left( 2 \right)\] , we have:
\[2np - \left( n - 1 \right)d = 2mp - \left( m - 1 \right)d\]
\[ \Rightarrow 2p\left( n - m \right) = d\left( n - 1 - m + 1 \right)\]
\[ \Rightarrow 2p = d\]
Substituting d = 2p in equation \[\left( 1 \right)\], we get:
a = p
Sum of p terms of the A.P. is given by:
\[\frac{p}{2}\left\{ 2a + \left( p - 1 \right)d \right\}\]
\[ = \frac{p}{2}\left\{ 2p + \left( p - 1 \right)2p \right\} \]
\[ = p^3\]
APPEARS IN
संबंधित प्रश्न
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Is 68 a term of the A.P. 7, 10, 13, ...?
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
The 10th and 18th terms of an A.P. are 41 and 73 respectively. Find 26th term.
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all integers between 50 and 500 which are divisible by 7.
Find the r th term of an A.P., the sum of whose first n terms is 3n2 + 2n.
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
If \[\frac{3 + 5 + 7 + . . . + \text { upto n terms }}{5 + 8 + 11 + . . . . \text { upto 10 terms }}\] 7, then find the value of n.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`
The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`
If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is ______.
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.