Advertisements
Advertisements
प्रश्न
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
उत्तर
Given:
\[10 a_{10} = 15 a_{15} \]
\[ \Rightarrow 10\left[ a + \left( 10 - 1 \right)d \right] = 15\left[ a + \left( 15 - 1 \right)d \right]\]
\[ \Rightarrow 10(a + 9d) = 15(a + 14d)\]
\[ \Rightarrow 10a + 90d = 15a + 210d\]
\[ \Rightarrow 0 = 5a + 120d\]
\[ \Rightarrow 0 = a + 24d\]
\[ \Rightarrow a = - 24d . . . (i)\]
To show:
\[a_{25} = 0\]
\[ \Rightarrow \text { LHS }: a_{25} = a + \left( 25 - 1 \right)d \]
\[ = a + 24d\]
\[ = - 24d + 24d \left( \text { From }(i) \right)\]
\[ = 0 = \text { RHS }\]
\[\text { Hence, proved } .\]
APPEARS IN
संबंधित प्रश्न
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
The ratio of the sums of m and n terms of an A.P. is m2: n2. Show that the ratio of mth and nthterm is (2m – 1): (2n – 1)
A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1 = a2, an = an − 1 + an − 2, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Is 68 a term of the A.P. 7, 10, 13, ...?
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the series:
3 + 5 + 7 + 6 + 9 + 12 + 9 + 13 + 17 + ... to 3n terms.
Solve:
1 + 4 + 7 + 10 + ... + x = 590.
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that a, b, c are in A.P.
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
Write the common difference of an A.P. whose nth term is xn + y.
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
Write the sum of first n even natural numbers.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is
The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.