मराठी

The Sum of Three Terms of an A.P. is 21 and the Product of the First and the Third Terms Exceeds the Second Term by 6, Find Three Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.

उत्तर

\[\text { Let the three terms of the A . P . be }a - d, a, a + d . \]

\[\text { Then, we have }: \]

\[a - d + a + a + d = 21\]

\[ \Rightarrow 3a = 21\]

\[ \Rightarrow a = 7 . . . . (i)\]

\[\text { Also }, (a - d)(a + d) - a = 6\]

\[ \Rightarrow a^2 - d^2 - a = 6\]

\[ \Rightarrow 49 - d^2 - 7 = 6\]

\[ \Rightarrow 36 = d^2 \]

\[ \Rightarrow \pm 6 = d\]

\[\text { When } d = 6, a = 7, \text { we get} : \]

\[1, 7, 13\]

\[\text {  When } d = - 6, a = 7, \text{we get }: \]

\[13, 7, 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 1 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

if `(a^n + b^n)/(a^(n-1) + b^(n-1))` is the A.M. between a and b, then find the value of n.


A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.


Let < an > be a sequence. Write the first five term in the following:

a1 = 1 = a2, an = an − 1 + an − 2, n > 2


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

3, 9/2, 6, 15/2, ... to 25 terms


Find the sum of all odd numbers between 100 and 200.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If a, b, c is in A.P., then show that:

bc − a2, ca − b2, ab − c2 are in A.P.


If a, b, c is in A.P., prove that:

a2 + c2 + 4ac = 2 (ab + bc + ca)


If a, b, c is in A.P., prove that:

 a3 + c3 + 6abc = 8b3.


If \[a\left( \frac{1}{b} + \frac{1}{c} \right), b\left( \frac{1}{c} + \frac{1}{a} \right), c\left( \frac{1}{a} + \frac{1}{b} \right)\] are in A.P., prove that abc are in A.P.


A man arranges to pay off a debt of Rs 3600 by 40 annual instalments which form an arithmetic series. When 30 of the instalments are paid, he dies leaving one-third of the debt unpaid, find the value of the first instalment.


A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If the sum of n terms of an A.P. is given by Sn = 3n + 2n2, then the common difference of the A.P. is ______.


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.


The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×