मराठी

The Sum of Three Numbers in A.P. is 12 and the Sum of Their Cubes is 288. Find the Numbers. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.

उत्तर

\[\text { Let the numbers be } (a - d), a, (a + d) . \]

\[\text { Sum } = a - d + a + a + d = 12\]

\[ \Rightarrow 3a = 12\]

\[ \Rightarrow a = 4\]

\[\text { Also }, (a - d )^3 + a^3 + (a + d )^3 = 288\]

\[ \Rightarrow a^3 - d^3 - 3 a^2 d + 3a d^2 + a^3 + a^3 + d^3 + 3 a^2 d + 3a d^2 = 288\]

\[ \Rightarrow 3 a^3 + 6a d^2 = 288\]

\[ \Rightarrow 3 \left( 4 \right)^3 + 6 \times 4 \times d^2 = 288\]

\[ \Rightarrow 192 + 24 d^2 = 288\]

\[ \Rightarrow 24 d^2 = 96\]

\[ \Rightarrow d^2 = 4\]

\[ \Rightarrow d = \pm 2\]

\[\text { When a = 4, d = 2, the numbers are } 2, 4, 6 . \]

\[\text {  When a = 4, d = - 2, the numbers are } 6, 4, 2 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.2 | Q 4 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


Find:

 10th term of the A.P. 1, 4, 7, 10, ...


Find:

nth term of the A.P. 13, 8, 3, −2, ...


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


How many numbers of two digit are divisible by 3?


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.


The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.


Find the sum of the following arithmetic progression :

50, 46, 42, ... to 10 terms


Find the sum of first n odd natural numbers.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4 : 9n + 6. Find the ratio of their 18th terms.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


Write the common difference of an A.P. the sum of whose first n terms is

\[\frac{p}{2} n^2 + Qn\].

If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


Mark the correct alternative in the following question:
If in an A.P., the pth term is q and (p + q)th term is zero, then the qth term is


Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is


Mark the correct alternative in the following question:

\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P  . , then }S_q \text { equals }\]


If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that `(m + n) (1/m - 1/p) = (m + p) (1/m - 1/n)`


If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an 


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the sum of n terms of a sequence is quadratic expression then it always represents an A.P


Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.


If the ratio of the sum of n terms of two APs is 2n:(n + 1), then the ratio of their 8th terms is ______.


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×