Advertisements
Advertisements
प्रश्न
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
उत्तर
Given:
\[\frac{S_n}{{S_n}^1} = \frac{2n + 5}{3n + 4}\]
\[ \Rightarrow \frac{\frac{n}{2}\left\{ 2a + \left( n - 1 \right)d \right\}}{\frac{n}{2}\left\{ 2b + \left( n - 1 \right) d^1 \right\}} = \frac{2n + 5}{3n + 4}\]
\[ \Rightarrow \frac{2a + \left( n - 1 \right)d}{2b + \left( n - 1 \right) d^1} = \frac{2n + 5}{3n + 4} . . . \left( 1 \right)\]
Ratio of their m terms =\[\frac{a_m}{b_m}\]
To find the ratio of the mth terms, replace n by 2m \[-\] 1 in equation (1).
\[\Rightarrow \frac{2a + \left( 2m - 2 \right)d}{2b + \left( 2m - 2 \right) d^1} = \frac{2\left( 2m - 1 \right) + 5}{3\left( 2m - 1 \right) + 4}\]
\[ \Rightarrow \frac{a + \left( m - 1 \right)d}{b + \left( m - 1 \right) d^1} = \frac{4m - 2 + 3}{6m - 3 + 4}\]
\[ \Rightarrow \frac{a_m}{b_m} = \frac{4m + 1}{6m + 1}\]
APPEARS IN
संबंधित प्रश्न
Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
9, 7, 5, 3, ...
The nth term of a sequence is given by an = 2n + 7. Show that it is an A.P. Also, find its 7th term.
Is 68 a term of the A.P. 7, 10, 13, ...?
The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.
In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
How many numbers are there between 1 and 1000 which when divided by 7 leave remainder 4?
The first and the last terms of an A.P. are a and l respectively. Show that the sum of nthterm from the beginning and nth term from the end is a + l.
Find the sum of the following arithmetic progression :
50, 46, 42, ... to 10 terms
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following arithmetic progression :
a + b, a − b, a − 3b, ... to 22 terms
Find the sum of the following serie:
(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]
Find the sum of first n natural numbers.
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
Write the common difference of an A.P. whose nth term is xn + y.
If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If the sum of n terms of an A.P. is 2 n2 + 5 n, then its nth term is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times the least, then the numbers are
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.