Advertisements
Advertisements
प्रश्न
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
पर्याय
10
12
13
14
उत्तर
14
The given series is 1, . . . . . . . . . . . , 31
There are n A.M.s between 1 and 31:
\[1, A_1 , A_2 , A_3 , . . . . . , A_n , 31\]
Common difference, d = \[\frac{31 - 1}{n + 1} = \frac{30}{n + 1}\]
Here, we have:
\[\frac{A_1}{A_n} = \frac{3}{29}\]
\[ \Rightarrow \frac{1 + d}{1 + nd} = \frac{3}{29}\]
\[ \Rightarrow \frac{1 + \frac{30}{n + 1}}{1 + n \times \frac{30}{n + 1}} = \frac{3}{29}\]
\[ \Rightarrow \frac{n + 1 + 30}{n + 1 + 30n} = \frac{3}{29}\]
\[ \Rightarrow \frac{n + 31}{31n + 1} = \frac{3}{29}\]
\[ \Rightarrow 29n + 899 = 93n + 3\]
\[ \Rightarrow 64n = 896\]
\[ \Rightarrow n = 14\]
APPEARS IN
संबंधित प्रश्न
If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Let < an > be a sequence. Write the first five term in the following:
a1 = 1, an = an − 1 + 2, n ≥ 2
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Find:
10th term of the A.P. 1, 4, 7, 10, ...
Which term of the A.P. 3, 8, 13, ... is 248?
If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Find the 12th term from the following arithmetic progression:
3, 8, 13, ..., 253
The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6, find three terms.
Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
3, 9/2, 6, 15/2, ... to 25 terms
Find the sum of the following arithmetic progression :
\[\frac{x - y}{x + y}, \frac{3x - 2y}{x + y}, \frac{5x - 3y}{x + y}\], ... to n terms.
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.
If Sn = n2 p and Sm = m2 p, m ≠ n, in an A.P., prove that Sp = p3.
Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
How many terms of the A.P. −6, \[- \frac{11}{2}\], −5, ... are needed to give the sum −25?
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
a2 (b + c), b2 (c + a), c2 (a + b) are also in A.P.
If a, b, c is in A.P., then show that:
b + c − a, c + a − b, a + b − c are in A.P.
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of n terms of an A.P., is 3 n2 + 5 n then which of its terms is 164?
If the first, second and last term of an A.P are a, b and 2a respectively, then its sum is
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
If a1, a2, ..., an are in A.P. with common difference d (where d ≠ 0); then the sum of the series sin d (cosec a1 cosec a2 + cosec a2 cosec a3 + ...+ cosec an–1 cosec an) is equal to cot a1 – cot an
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.