मराठी

Find the Sum of the Following Serie: 2 + 5 + 8 + ... + 182 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following serie:

 2 + 5 + 8 + ... + 182

उत्तर

2 + 5 + 8 + ... + 182
Here, the series is an A.P. where we have the following:

\[a = 2\]

\[d = \left( 5 - 2 \right) = 3\]

\[ a_n = 182\]

\[ \Rightarrow 2 + (n - 1)(3) = 182\]

\[ \Rightarrow 2 + 3n - 3 = 182\]

\[ \Rightarrow 3n - 1 = 182\]

\[ \Rightarrow 3n = 183\]

\[ \Rightarrow n = 61\]

\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]

\[ \Rightarrow S_{61} = \frac{61}{2}\left[ 2 \times 2 + \left( 61 - 1 \right) \times 3 \right] \]

              \[ = \frac{61}{2}\left[ 2 \times 2 + 60 \times 3 \right]\]

               \[ = 5612\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Arithmetic Progression - Exercise 19.4 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 19 Arithmetic Progression
Exercise 19.4 | Q 2.1 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum of odd integers from 1 to 2001.


Find the sum to n terms of the A.P., whose kth term is 5k + 1.


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.


Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?


Let < an > be a sequence. Write the first five term in the following:

a1 = a2 = 2, an = a− 1 − 1, n > 2


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}, 7\sqrt{2}, . . .\]


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Is 302 a term of the A.P. 3, 8, 13, ...?


If 9th term of an A.P. is zero, prove that its 29th term is double the 19th term.


If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.


In a certain A.P. the 24th term is twice the 10th term. Prove that the 72nd term is twice the 34th term.


If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


The sum of three numbers in A.P. is 12 and the sum of their cubes is 288. Find the numbers.


Find the sum of the following serie:

101 + 99 + 97 + ... + 47


Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.


Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all integers between 50 and 500 which are divisible by 7.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Solve: 

1 + 4 + 7 + 10 + ... + x = 590.


The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series. 


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

 bc, ca, ab are in A.P.


There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.


Sum of all two digit numbers which when divided by 4 yield unity as remainder is


The first and last terms of an A.P. are 1 and 11. If the sum of its terms is 36, then the number of terms will be


If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is


If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =


Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively. 


The first term of an A.P. is a, the second term is b and the last term is c. Show that the sum of the A.P. is `((b + c - 2a)(c + a))/(2(b - a))`.


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×