Advertisements
Advertisements
प्रश्न
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
पर्याय
1200
1210
1250
none of these.
उत्तर
1210
The given series is 13, 17, 21....97.
\[a_1 = 13, a_2 = 17, a_n = 97\]
\[d = a_2 - a_1 = 7 - 3 = 4\]
\[a_n = 97\]
\[ \Rightarrow a + \left( n - 1 \right)d = 97\]
\[ \Rightarrow 13 + \left( n - 1 \right)4 = 97\]
\[ \Rightarrow n = 22\]
Sum of the above series:
\[S_{22} = \frac{22}{2}\left\{ 2 \times 13 + \left( 22 - 1 \right)4 \right\}\]
\[ = 11\left\{ 26 + 84 \right\}\]
\[ = 1210\]
APPEARS IN
संबंधित प्रश्न
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)
The sum of the first four terms of an A.P. is 56. The sum of the last four terms is 112. If its first term is 11, then find the number of terms.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 4, 9, 14, ... is 254?
Is 302 a term of the A.P. 3, 8, 13, ...?
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following serie:
2 + 5 + 8 + ... + 182
The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
The first term of an A.P. is 2 and the last term is 50. The sum of all these terms is 442. Find the common difference.
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If a, b, c is in A.P., prove that:
a2 + c2 + 4ac = 2 (ab + bc + ca)
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
A man accepts a position with an initial salary of ₹5200 per month. It is understood that he will receive an automatic increase of ₹320 in the very next month and each month thereafter.
(i) Find his salary for the tenth month.
(ii) What is his total earnings during the first year?
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
Mark the correct alternative in the following question:
The 10th common term between the A.P.s 3, 7, 11, 15, ... and 1, 6, 11, 16, ... is
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
If there are (2n + 1) terms in an A.P., then prove that the ratio of the sum of odd terms and the sum of even terms is (n + 1) : n
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).
If b2, a2, c2 are in A.P., then `1/(a + b), 1/(b + c), 1/(c + a)` will be in ______