Advertisements
Advertisements
प्रश्न
If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.
उत्तर
\[\text { We have: } \]
\[ S_n = nP + \frac{1}{2}n(n - 1)Q\]
\[\text { For } n = 1, S_1 = P + 0 = P\]
\[\text { For } n = 2, S_2 = 2P + Q \]
\[\text { Also }, a_1 = S_1 = P, \]
\[ a_2 = S_2 - S_1 \]
\[ = 2P + Q - P = P + Q\]
\[ \therefore d = a_2 - a_1 = P + Q - P = Q \]
APPEARS IN
संबंधित प्रश्न
Find the sum of odd integers from 1 to 2001.
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th term is –112.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Find:
nth term of the A.P. 13, 8, 3, −2, ...
If the sequence < an > is an A.P., show that am +n +am − n = 2am.
Which term of the A.P. 84, 80, 76, ... is 0?
Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 34. Find the first term and the common difference of the A.P.
\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]
\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
Find the sum of the following arithmetic progression :
41, 36, 31, ... to 12 terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all odd numbers between 100 and 200.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Find the sum of n terms of the A.P. whose kth terms is 5k + 1.
In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:
\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c is in A.P., prove that:
(a − c)2 = 4 (a − b) (b − c)
If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If m th term of an A.P. is n and nth term is m, then write its pth term.
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
Mark the correct alternative in the following question:
\[\text { If in an A . P } . S_n = n^2 q \text { and } S_m = m^2 q, \text { where } S_r \text{ denotes the sum of r terms of the A . P . , then }S_q \text { equals }\]
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
In an A.P. the pth term is q and the (p + q)th term is 0. Then the qth term is ______.
Find the rth term of an A.P. sum of whose first n terms is 2n + 3n2
If n AM's are inserted between 1 and 31 and ratio of 7th and (n – 1)th A.M. is 5:9, then n equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.