Advertisements
Advertisements
प्रश्न
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
उत्तर
101 + 99 + 97 + ... + 47
Here, the series is an A.P. where we have the following:
\[a = 101\]
\[d = \left( 99 - 101 \right) = - 2\]
\[ a_n = 47\]
\[ \Rightarrow 101 + (n - 1)( - 2) = 47\]
\[ \Rightarrow 101 - 2n + 2 = 47\]
\[ \Rightarrow 2n - 2 = 54\]
\[ \Rightarrow 2n = 56\]
\[ \Rightarrow n = 28\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{28} = \frac{28}{2}\left[ 2 \times 101 + \left( 28 - 1 \right) \times ( - 2) \right]\]
\[ = \frac{28}{2}\left[ 2 \times 101 + 27 \times ( - 2) \right] \]
\[ = 2072\]
APPEARS IN
संबंधित प्रश्न
If the sum of n terms of an A.P. is (pn + qn2), where p and q are constants, find the common difference.
Show that the sum of (m + n)th and (m – n)th terms of an A.P. is equal to twice the mth term.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs 1000 plus 10% interest on the unpaid amount. How much will the scooter cost him?
A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by 20%. Find the estimated value at the end of 5 years.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Is 68 a term of the A.P. 7, 10, 13, ...?
If (m + 1)th term of an A.P. is twice the (n + 1)th term, prove that (3m + 1)th term is twice the (m + n + 1)th term.
Find the 12th term from the following arithmetic progression:
1, 4, 7, 10, ..., 88
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following arithmetic progression :
(x − y)2, (x2 + y2), (x + y)2, ... to n terms
Find the sum of all odd numbers between 100 and 200.
Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667.
Find the sum of all even integers between 101 and 999.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
If the sum of a certain number of terms of the AP 25, 22, 19, ... is 116. Find the last term.
If S1 be the sum of (2n + 1) terms of an A.P. and S2 be the sum of its odd terms, then prove that: S1 : S2 = (2n + 1) : (n + 1).
If a, b, c is in A.P., then show that:
bc − a2, ca − b2, ab − c2 are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.
The income of a person is Rs 300,000 in the first year and he receives an increase of Rs 10000 to his income per year for the next 19 years. Find the total amount, he received in 20 years.
A man starts repaying a loan as first instalment of Rs 100 = 00. If he increases the instalments by Rs 5 every month, what amount he will pay in the 30th instalment?
A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Write the sum of first n odd natural numbers.
If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [cosec a1cosec a2 + cosec a1 cosec a3 + .... + cosec an − 1 cosec an] is
If a1, a2, a3, .... an are in A.P. with common difference d, then the sum of the series sin d [sec a1 sec a2 + sec a2 sec a3 + .... + sec an − 1 sec an], is
Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =
Write the quadratic equation the arithmetic and geometric means of whose roots are Aand G respectively.
Show that (x2 + xy + y2), (z2 + xz + x2) and (y2 + yz + z2) are consecutive terms of an A.P., if x, y and z are in A.P.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If 100 times the 100th term of an A.P. with non zero common difference equals the 50 times its 50th term, then the 150th term of this A.P. is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.