Advertisements
Advertisements
प्रश्न
Find the sum of all even integers between 101 and 999.
उत्तर
The even integers between 101 and 999 are:
102, 104...998
Here, we have:
\[a = 102\]
\[d = 2 \]
\[ a_n = 998\]
\[ \Rightarrow 102 + (n - 1)2 = 998\]
\[ \Rightarrow 2n - 2 = 896\]
\[ \Rightarrow 2n = 898\]
\[ \Rightarrow n = 449\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{449} = \frac{449}{2}\left[ 2 \times 102 + (449 - 1) \times 2 \right]\]
\[ \Rightarrow S_{449} = \frac{449}{2}\left[ 1100 \right]\]
\[ \Rightarrow S_{449} = 246950\]
APPEARS IN
संबंधित प्रश्न
Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of 7th and (m – 1)th numbers is 5:9. Find the value of m.
The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
The pth, qth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0
If the nth term an of a sequence is given by an = n2 − n + 1, write down its first five terms.
Let < an > be a sequence. Write the first five term in the following:
a1 = a2 = 2, an = an − 1 − 1, n > 2
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.
−1, 1/4, 3/2, 11/4, ...
Which term of the A.P. 4, 9, 14, ... is 254?
Is 302 a term of the A.P. 3, 8, 13, ...?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
Find the 12th term from the following arithmetic progression:
3, 5, 7, 9, ... 201
How many numbers of two digit are divisible by 3?
If the sum of three numbers in A.P. is 24 and their product is 440, find the numbers.
The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of the following serie:
101 + 99 + 97 + ... + 47
Find the sum of all integers between 100 and 550, which are divisible by 9.
The number of terms of an A.P. is even; the sum of odd terms is 24, of the even terms is 30, and the last term exceeds the first by \[10 \frac{1}{2}\] ,find the number of terms and the series.
If 12th term of an A.P. is −13 and the sum of the first four terms is 24, what is the sum of first 10 terms?
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:
\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.
A man saved Rs 16500 in ten years. In each year after the first he saved Rs 100 more than he did in the receding year. How much did he save in the first year?
A manufacturer of radio sets produced 600 units in the third year and 700 units in the seventh year. Assuming that the product increases uniformly by a fixed number every year, find (i) the production in the first year (ii) the total product in 7 years and (iii) the product in the 10th year.
A man saved ₹66000 in 20 years. In each succeeding year after the first year he saved ₹200 more than what he saved in the previous year. How much did he save in the first year?
Write the common difference of an A.P. the sum of whose first n terms is
If log 2, log (2x − 1) and log (2x + 3) are in A.P., write the value of x.
If the sums of n terms of two arithmetic progressions are in the ratio 2n + 5 : 3n + 4, then write the ratio of their m th terms.
Write the sum of first n even natural numbers.
Sum of all two digit numbers which when divided by 4 yield unity as remainder is
If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to
If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P.
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
Find the sum of first 24 terms of the A.P. a1, a2, a3, ... if it is known that a1 + a5 + a10 + a15 + a20 + a24 = 225.
A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. What is his total earnings during the first year?
If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.
If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.