Advertisements
Advertisements
प्रश्न
Find the sum of all even integers between 101 and 999.
उत्तर
The even integers between 101 and 999 are:
102, 104...998
Here, we have:
\[a = 102\]
\[d = 2 \]
\[ a_n = 998\]
\[ \Rightarrow 102 + (n - 1)2 = 998\]
\[ \Rightarrow 2n - 2 = 896\]
\[ \Rightarrow 2n = 898\]
\[ \Rightarrow n = 449\]
\[ S_n = \frac{n}{2}\left[ 2a + (n - 1)d \right]\]
\[ \Rightarrow S_{449} = \frac{449}{2}\left[ 2 \times 102 + (449 - 1) \times 2 \right]\]
\[ \Rightarrow S_{449} = \frac{449}{2}\left[ 1100 \right]\]
\[ \Rightarrow S_{449} = 246950\]
APPEARS IN
संबंधित प्रश्न
Find the sum to n terms of the A.P., whose kth term is 5k + 1.
Sum of the first p, q and r terms of an A.P. are a, b and c, respectively.
Prove that `a/p (q - r) + b/q (r- p) + c/r (p - q) = 0`
A man starts repaying a loan as first installment of Rs. 100. If he increases the installment by Rs 5 every month, what amount he will pay in the 30th installment?
If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Find the sum of all numbers between 200 and 400 which are divisible by 7.
A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.
Let < an > be a sequence defined by a1 = 3 and, an = 3an − 1 + 2, for all n > 1
Find the first four terms of the sequence.
The Fibonacci sequence is defined by a1 = 1 = a2, an = an − 1 + an − 2 for n > 2
Find `(""^an +1)/(""^an")` for n = 1, 2, 3, 4, 5.
Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely imaginary?
How many terms are there in the A.P. 7, 10, 13, ... 43 ?
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
If < an > is an A.P. such that \[\frac{a_4}{a_7} = \frac{2}{3}, \text { find }\frac{a_6}{a_8}\].
Find the sum of the following arithmetic progression :
1, 3, 5, 7, ... to 12 terms
Find the sum of all natural numbers between 1 and 100, which are divisible by 2 or 5.
Find the sum of first n odd natural numbers.
Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.
Solve:
25 + 22 + 19 + 16 + ... + x = 115
How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?
Find an A.P. in which the sum of any number of terms is always three times the squared number of these terms.
If a2, b2, c2 are in A.P., prove that \[\frac{a}{b + c}, \frac{b}{c + a}, \frac{c}{a + b}\] are in A.P.
Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to pay the balance in annual instalments of Rs 1000 plus 10% interest on the unpaid amount. How much the scooter will cost him.
Write the common difference of an A.P. the sum of whose first n terms is
Write the value of n for which n th terms of the A.P.s 3, 10, 17, ... and 63, 65, 67, .... are equal.
If n arithmetic means are inserted between 1 and 31 such that the ratio of the first mean and nth mean is 3 : 29, then the value of n is
The first and last term of an A.P. are a and l respectively. If S is the sum of all the terms of the A.P. and the common difference is given by \[\frac{l^2 - a^2}{k - (l + a)}\] , then k =
If a, b, c are in A.P. and x, y, z are in G.P., then the value of xb − c yc − a za − b is
If a, b, c are in G.P. and a1/x = b1/y = c1/z, then xyz are in
If for an arithmetic progression, 9 times nineth term is equal to 13 times thirteenth term, then value of twenty second term is ____________.
The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.
The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers
Let 3, 6, 9, 12 ....... upto 78 terms and 5, 9, 13, 17 ...... upto 59 be two series. Then, the sum of the terms common to both the series is equal to ______.
If a1, a2, a3, .......... are an A.P. such that a1 + a5 + a10 + a15 + a20 + a24 = 225, then a1 + a2 + a3 + ...... + a23 + a24 is equal to ______.
The number of terms in an A.P. is even; the sum of the odd terms in lt is 24 and that the even terms is 30. If the last term exceeds the first term by `10 1/2`, then the number of terms in the A.P. is ______.
The internal angles of a convex polygon are in A.P. The smallest angle is 120° and the common difference is 5°. The number to sides of the polygon is ______.
The fourth term of an A.P. is three times of the first term and the seventh term exceeds the twice of the third term by one, then the common difference of the progression is ______.