हिंदी

Find the Sum to N Terms of the Arithmetic Progression, Whose Kth Term is 5k + 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum to n terms of the A.P., whose kth term is 5k + 1.

उत्तर

It is given that the kth term of the A.P. is 5k + 1.

kth term = ak = + (k – 1)d

∴ + (k – 1)d = 5k + 1

a + kd – d = 5k + 1

Comparing the coefficient of k, we obtain d = 5

– = 1

⇒ a – 5 = 1

⇒ a = 6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.2 [पृष्ठ १८५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.2 | Q 7 | पृष्ठ १८५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


In an A.P., if pth term is 1/q and qth term is 1/p,  prove that the sum of first pq terms is 1/2 (pq + 1) where `p != q`


If the sum of a certain number of terms of the A.P. 25, 22, 19, … is 116. Find the last term


The sums of n terms of two arithmetic progressions are in the ratio 5n + 4: 9n + 6. Find the ratio of their 18th terms


If the sum of n terms of an A.P. is 3n2 + 5n and its mth term is 164, find the value of m.


Let the sum of n, 2n, 3n terms of an A.P. be S1, S2 and S3, respectively, show that S3 = 3 (S2– S1)


Find the sum of integers from 1 to 100 that are divisible by 2 or 5.


A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


The first term of an A.P. is 5, the common difference is 3 and the last term is 80; find the number of terms.


The 6th and 17th terms of an A.P. are 19 and 41 respectively, find the 40th term.


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253


\[\text { If } \theta_1 , \theta_2 , \theta_3 , . . . , \theta_n \text { are in AP, whose common difference is d, then show that }\]

\[\sec \theta_1 \sec \theta_2 + \sec \theta_2 \sec \theta_3 + . . . + \sec \theta_{n - 1} \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d} \left[ NCERT \hspace{0.167em} EXEMPLAR \right]\]


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of first n natural numbers.


Find the sum of first n odd natural numbers.


Find the sum of all integers between 84 and 719, which are multiples of 5.


Find the sum of all integers between 100 and 550, which are divisible by 9.


Find the sum of all those integers between 100 and 800 each of which on division by 16 leaves the remainder 7.


Find the sum of n terms of the A.P. whose kth terms is 5k + 1.


In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th term is −112.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

\[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P.


A carpenter was hired to build 192 window frames. The first day he made five frames and each day thereafter he made two more frames than he made the day before. How many days did it take him to finish the job? 


In a cricket team tournament 16 teams participated. A sum of ₹8000 is to be awarded among themselves as prize money. If the last place team is awarded ₹275 in prize money and the award increases by the same amount for successive finishing places, then how much amount will the first place team receive?


Write the sum of first n even natural numbers.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If Sn denotes the sum of first n terms of an A.P. < an > such that

\[\frac{S_m}{S_n} = \frac{m^2}{n^2}, \text { then }\frac{a_m}{a_n} =\]

Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If second, third and sixth terms of an A.P. are consecutive terms of a G.P., write the common ratio of the G.P. 


The first three of four given numbers are in G.P. and their last three are in A.P. with common difference 6. If first and fourth numbers are equal, then the first number is 


The pth term of an A.P. is a and qth term is b. Prove that the sum of its (p + q) terms is `(p + q)/2[a + b + (a - b)/(p - q)]`.


The product of three numbers in A.P. is 224, and the largest number is 7 times the smallest. Find the numbers


A man accepts a position with an initial salary of Rs 5200 per month. It is understood that he will receive an automatic increase of Rs 320 in the very next month and each month thereafter. Find his salary for the tenth month


If in an A.P., Sn = qn2 and Sm = qm2, where Sr denotes the sum of r terms of the A.P., then Sq equals ______.


Let Sn denote the sum of the first n terms of an A.P. If S2n = 3Sn then S3n: Sn is equal to ______.


The sum of terms equidistant from the beginning and end in an A.P. is equal to ______.


Any term of an A.P. (except first) is equal to half the sum of terms which are equidistant from it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×