हिंदी

Find the 12th Term from the Following Arithmetic Progression:3, 8, 13, ..., 253 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the 12th term from the following arithmetic progression:

3, 8, 13, ..., 253

उत्तर

 3, 8, 13...253
Consider the given progression with 253 as the first term  and −5 as the common difference.
12th term from the end = \[253 + (12 - 1)( - 5) = 198\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Arithmetic Progression - Exercise 19.2 [पृष्ठ १२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 19 Arithmetic Progression
Exercise 19.2 | Q 15.2 | पृष्ठ १२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum of odd integers from 1 to 2001.


Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.


If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.


Find the sum of all numbers between 200 and 400 which are divisible by 7.


Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.


The pthqth and rth terms of an A.P. are a, b, c respectively. Show that (q – r )a + (r – p )b + (p – q )c = 0


if `a(1/b + 1/c), b(1/c+1/a), c(1/a+1/b)` are in A.P., prove that a, b, c are in A.P.


A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?


A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.


Show that the following sequence is an A.P. Also find the common difference and write 3 more terms in case.

−1, 1/4, 3/2, 11/4, ...


Find: 

18th term of the A.P.

\[\sqrt{2}, 3\sqrt{2}, 5\sqrt{2},\]


If the sequence < an > is an A.P., show that am +n +am − n = 2am.


Which term of the sequence 24, \[23\frac{1}{4,} 22\frac{1}{2,} 21\frac{3}{4}\]....... is the first negative term?


Which term of the sequence 12 + 8i, 11 + 6i, 10 + 4i, ... is purely real ?


If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.


The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.


Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.


How many numbers of two digit are divisible by 3?


Find the sum of the following arithmetic progression :

1, 3, 5, 7, ... to 12 terms


Find the sum of the following arithmetic progression :

a + b, a − b, a − 3b, ... to 22 terms


Find the sum of the following serie:

 2 + 5 + 8 + ... + 182


Find the sum of the following serie:

(a − b)2 + (a2 + b2) + (a + b)2 + ... + [(a + b)2 + 6ab]


Find the sum of all integers between 100 and 550, which are divisible by 9.


How many terms are there in the A.P. whose first and fifth terms are −14 and 2 respectively and the sum of the terms is 40?


The sum of first 7 terms of an A.P. is 10 and that of next 7 terms is 17. Find the progression.


If the sum of n terms of an A.P. is nP + \[\frac{1}{2}\] n (n − 1) Q, where P and Q are constants, find the common difference.


If \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P., prove that:

a (b +c), b (c + a), c (a +b) are in A.P.


If \[\frac{b + c}{a}, \frac{c + a}{b}, \frac{a + b}{c}\] are in A.P., prove that:

\[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.


If x, y, z are in A.P. and A1 is the A.M. of x and y and A2 is the A.M. of y and z, then prove that the A.M. of A1 and A2 is y.


A man saves Rs 32 during the first year. Rs 36 in the second year and in this way he increases his savings by Rs 4 every year. Find in what time his saving will be Rs 200.


If the sum of n terms of an AP is 2n2 + 3n, then write its nth term.


If the sums of n terms of two AP.'s are in the ratio (3n + 2) : (2n + 3), then find the ratio of their 12th terms.


If 7th and 13th terms of an A.P. be 34 and 64 respectively, then its 18th term is


Let Sn denote the sum of n terms of an A.P. whose first term is a. If the common difference d is given by d = Sn − k Sn − 1 + Sn − 2 , then k =


If, S1 is the sum of an arithmetic progression of 'n' odd number of terms and S2 the sum of the terms of the series in odd places, then \[\frac{S_1}{S_2}\] = 


If in an A.P., Sn = n2p and Sm = m2p, where Sr denotes the sum of r terms of the A.P., then Sp is equal to


The first term of an A.P.is a, and the sum of the first p terms is zero, show that the sum of its next q terms is `(-a(p + q)q)/(p - 1)`


If the sum of p terms of an A.P. is q and the sum of q terms is p, show that the sum of p + q terms is – (p + q). Also, find the sum of first p – q terms (p > q).


If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×